Relationship Between Cell Compatibility and Elastic Modulus of Silicone Rubber/Organoclay Nanobiocomposites
نویسندگان
چکیده
BACKGROUND Substrates in medical science are hydrophilic polymers undergoing volume expansion when exposed to culture medium that influenced on cell attachment. Although crosslinking by chemical agents could reduce water uptake and promote mechanical properties, these networks would release crosslinking agents. In order to overcome this weakness, silicone rubber is used and reinforced by nanoclay. OBJECTIVES Attempts have been made to prepare nanocomposites based on medical grade HTV silicone rubber (SR) and organo-modified montmorillonite (OMMT) nanoclay with varying amounts of clay compositions. MATERIALS AND METHODS Incorporation of nanocilica platelets into SR matrix was carried out via melt mixing process taking advantage of a Brabender internal mixer. The tensile elastic modulus of nanocomposites was measured by performing tensile tests on the samples. Produced polydimetylsiloxane (PDMS) composites with different flexibilities and crosslink densities were employed as substrates to investigate biocompatibility, cell compaction, and differential behaviors. RESULTS The results presented here revealed successful nanocomposite formation with SR and OMMT, resulting in strong PDMS-based materials. The results showed that viability, proliferation, and spreading of cells are governed by elastic modulus and stiffness of samples. Furthermore, adipose derived stem cells (ADSCs) cultured on PDMS and corresponding nanocomposites could retain differentiation potential of osteocytes in response to soluble factors, indicating that inclusion of OMMT would not prevent osteogenic differentiation. Moreover, better spread out and proliferation of cells was observed in nanocomposite samples. CONCLUSIONS Considering cell behavior and mechanical properties of nanobiocomposites it could be concluded that silicone rubber substrate filled by nanoclay are a good choice for further experiments in tissue engineering and medical regeneration due to its cell compatibility and differentiation capacity.
منابع مشابه
Viscoelastic Behavior of Tissues and Implant Materials: Estimation of the Elastic Modulus and Viscous Contribution Using Optical Coherence Tomography and Vibrational Analysis
Recently, we have reported use of Optical Coherence Tomography (OCT) and vibrational analysis to determine the resonant frequency of a material from which the moduli of decellularized dermis, pig skin, silicone rubber and chemically modified dermis were calculated. In this paper, we present data on viscoelastic mechanical properties of extracellular matrices and silicone rubber at frequencies a...
متن کاملThe mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications
Polydimethylsiloxane (PDMS) is a commercially available physically and chemically stable silicone rubber. It has a unique flexibility with a shear elastic modulus G ≈ 250 kPa due to one of the lowest glass transition temperatures of any polymer (Tg ≈ −125 ◦C). Further properties of PDMS are a low change in the shear elastic modulus versus temperature (1.1 kPa ◦C−1), virtually no change in G ver...
متن کاملEffects of the Curing Process on the Residual Stress in Solar Cell Module
Panels using solar power require high reliability, and the residual stress in the solar panel has an important effect on its reliability and lifetime. The finite element method was adopted to simulate the impacts of the rectangular solar panel encapsulation process parameters, such as the elastic modulus, the thickness of adhesive, and the curing temperature on the residual stress in the solar ...
متن کاملCharacterization of poly(ε-caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging.
Antioxidant nanobiocomposites based on poly(ε-caprolactone) (PCL) were prepared by incorporating hydroxytyrosol (HT) and a commercial montmorillonite, Cloisite30B (C30B), at different concentrations. A full structural, thermal, mechanical, and functional characterization of the developed nanobiocomposites was carried out. The presence of the nanoclay and HT increased PCL crystallinity, whereas ...
متن کاملSilicone-polyether Copolymers as New Steam Turbine Oil Demulsifiers
Turbine oil plays an important role in supporting optimal steam turbine performance. Some additives in turbine oil can cause emulsification when the oil is contaminated by water, so demulsibility is a very important property of the steam turbine oil. In order to improve the demulsibility of steam turbine oil, two kinds of polyether-silicone comb copolymers are synthesized and used as steam turb...
متن کامل